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Abstract

In this paper, the dynamic behavior of a block-on-belt system subjected to simultaneous parametric and
external excitations is studied, in which the parametric excitation arises from the variable stiffness of a
spring in the system while the external excitation consists of a harmonic force. In addition, the system is
damped by dry friction that follows the classical Coulomb’s law. The focus of the paper is on analyzing the
influence of the parametric excitation on the qualitative features of system dynamics, under various
frequency ratios between the external and parametric excitations. Numerical simulations are carried out,
whose results are visualized by means of bifurcation diagrams, Poincaré sections and Lyapunov exponents.
The results show that the system possesses rich dynamics characterized by periodic, quasi-periodic and
chaotic attractors. Furthermore, it is found that the parametric excitation amplitude and the frequency
ratio between the excitations have a significant impact on the dynamical behavior of the system.
r 2005 Elsevier Ltd. All rights reserved.
1. Introduction

The vibration of dry friction damped systems has been of considerable interest to researchers
for a long time, for it occurs frequently in everyday life as well as in engineering systems such as
creaking doors, squeaking chalks, and rattling turbine blade joints. In addition, dry friction as a
see front matter r 2005 Elsevier Ltd. All rights reserved.
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discontinuous nonlinearity poses challenges to researchers since most results for differentiable
systems cannot be directly applied to dry friction-damped systems. Recent research has shown
that really complex dynamics, e.g. chaos, can be exhibited from very simple systems under dry
friction even in its simplest form, Coulomb damping.
Among the earliest research on dry friction oscillations is that of Den Hartog [1], where an

exact solution was presented for the steady-state vibration of an sdof harmonically excited system
subjected to dry friction. He also performed several experimental tests to verify his solutions.
Since then, a great amount of research has been done in this field, and some of the recent work is
summarized as follows. Feeny and Moon [2] investigated the geometry of chaotic attractors for
dry friction oscillators experimentally and numerically, using three different friction laws. Later,
Oestreich et al. [3] employed a one-dimensional map to discuss bifurcation and stability of a dry
friction damped block-on-belt system, and the map approach was shown to be an efficient and
illustrative way to carry out such analysis. The response of a dry friction damped block-on-belt
system was also analyzed by Andreaus and Casini [4], with emphasis laid on the influence of the
belt speed and the friction modeling on the system response. In the paper of Van De Vrande et al.
[5], both stable and unstable periodic solutions were derived for the stick-slip vibration of an
autonomous dry friction oscillator with a smoothing procedure. The work of Galvanetto [6,7]
dealt with dynamics of a three-block mechanical system with dry friction, as well as discontinuous
bifurcations in a two-block system affected by dry friction. Most recently, Thomsen and Fidlin [8]
considered friction-induced vibrations of a mass-on-belt system, and they obtained approximate
analytical expressions for the amplitudes and base frequencies of stick-slip and pure-slip
oscillations.
In all of the research above, either no excitation or only a single harmonic excitation was

assumed. In practice, however, multiexcitations can exist in various vibration systems with dry
friction, and they may have a dramatic effect on the system’s dynamic characteristics. To address
the lack of research on this issue, the authors [9] studied the vibration of a single-degree-of-
freedom dry friction damped system subjected to two harmonic disturbing forces with different
frequencies and determined analytically the steady-state responses for the system undergoing
periodic pure-slipping and stick-slip motions. Moreover, we extended our study to the rotational
vibration of a multidegree-of-freedom belt drive system with a dry friction tensioner subjected to
multiple harmonic excitations [10], in which an analytical solution procedure was developed to
predict two kinds of periodic responses of the system characterized by the non-stick and stick-slip
vibration of the tensioner arm in the system, respectively. In a recent paper [11], we delved into the
chaotic aspects of sdof two-frequency oscillations with dry friction. All our previous studies have
shown the significant influence of multifrequency excitations combined with dry friction. In this
paper, we further our study into a dry friction oscillator subjected to both parametric and external
excitations with different frequencies. Multiexcitations can arise also in absence of external
harmonic excitations as in the case of the block being dragged by multiple rough belts
characterized by different friction parameters and moving with different velocities [12]. With
respect to the research on parametric vibrations, some most recent studies are Refs. [13–15]. In the
present study, the dynamics of a block-on-belt system subjected to simultaneous parametric and
external excitations is investigated, with focus laid on bifurcation analysis to gain insight into the
influence of the parametric excitation on the qualitative features of system dynamics. Numerical
simulations are carried out, which show that the system possesses rich dynamics characterized by
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periodic, quasi-periodic and chaotic attractors. Furthermore, it is found that the parametric
excitation amplitude and the frequency ratio of the external and parametric excitations have a
significant impact on the dynamical behavior of the system.
2. System description

The investigated system is shown in Fig. 1, where a mass m is connected to a fixed support via a
spring of variable stiffness k and is sliding on a moving belt with a constant velocity v0: The mass
is subjected to a harmonic excitation, namely P cos O t; and dry friction as well when there exists
relative motion or a tendency towards relative motion between the mass and the belt. In the study,
the following assumptions are made:
The spring stiffness varies periodically as

kðtÞ ¼ k0ð1þ � cosotÞ (1)

in which k0; � and o are constants. Furthermore, the excitation frequency is proportional to the
frequency of the spring stiffness

O
o
� n ¼

M

N
, (2)

where M and N are incommensurable integers.
The dry friction between the mass and the belt follows Coulomb’s friction law characterized by

a static friction coefficient ms and a smaller kinetic friction coefficient mk:
The equation of motion for the oscillator is given by

m €x þ k0ð1þ � cos otÞx ¼ P cos Ot � mN sgn ð _x � v0Þ, (3)
k=k0(1+�cos�t)
N

Pcos�tm

x

v0

Fig. 1. Model of a dry friction oscillator.
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where x denotes the displacement of the mass, N is the normal force in the contact area, and

m ¼
mk ð _xav0Þ;

ms ð _x ¼ v0Þ;

(
(4)

sgnðyÞ

¼ 1 ðy40Þ;

2 ½�1; 1	 ðy ¼ 0Þ y 2 R;

¼ �1 ðyo0Þ:

8><
>: (5)

By defining the quantities

on ¼

ffiffiffiffiffi
k0

m

r
; t ¼ ont; Z ¼

o
on

; xv ¼
v0

on

; xp ¼
P

k0
,

xf ¼
mN

k0
¼

xfk ð _xav0Þ;

xfs ð _x ¼ v0Þ:

(
ð6Þ

Eq. (3) can be normalized as

x00 þ x þ �x cos Zt ¼ xp cos nZt� xf sgn ðx
0 � xvÞ (7)

in which the prime indicates differentiation with respect to the non-dimensional time t:
3. Dynamic analysis

3.1. Computational technique for solutions

For the system described by Eq. (7), two types of steady motion are possible: one is the non-
stick motion in which the mass never or only instantaneously reaches the speed of the moving belt,
and the other is the stick-slip motion in which the mass slips on and sticks to the belt alternately.
To determine which type of steady motion the system enters, we need to compute its time history
using the following technique. In general, the mass may experience both the slip mode (x0axv)
and the stick mode (x0 ¼ xv), given an arbitrary initial condition. For the slip mode, a fourth-
order Runge–Kutta varying-step algorithm can be adopted to solve the differential Eq. (7) with
sufficient precision; while for the stick mode, the mass simply moves with the velocity of the
moving belt. The main computational error, however, arises from the detection of transitions
from one mode of motion to another. Hence, the computation of the precise time value when the
transition occurs is of crucial importance to the accuracy of the results. The general idea of our
approach is to judge if the mode of motion changes after one time step. Two types of time steps
are used: one is fixed while the other is variable. The fixed non-dimensional time step is set to be
0.01 to ensure that no mode of motion is omitted in the calculation, while the varying one is
decreased by half consecutively to make sure that the value of the transition time is precise to the
order of 10�16; and thereby the accuracy of the results can be guaranteed. In the procedure, a
function is constructed with a return value showing which mode of motion the system state lies in,
and the corresponding solution subroutine is then utilized to move the system state continuously
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Fig. 2. Flow chart for detecting transitions.
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forward by the fixed time step until the mode of motion changes. Then, we move the system state
one fixed time step backward, and evolve it with varying time steps till we obtain the transition
time with satisfactory precision. To illustrate this procedure, a flow chart is shown schematically
in Fig. 2. It is noted that the function of ‘‘judge_mode ( )’’ in the flow chart is based on the speed
relationship between the mass and the belt, as well as on the magnitude relationship between the
static dry friction and other forces applied on the mass when its speed is equal to the belt speed.

3.2. Poincaré section, bifurcation diagram and Lyapunov exponent

In the above section, we have developed a computational technique with which the time history
of the system can be determined under any initial conditions. Although time history by itself can
hardly reveal any qualitative features of the system dynamics, it provides a foundation for the
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study of the system’s qualitative dynamic behavior, which will be discussed in this section from the
perspectives of Poincaré sections, bifurcation diagrams and Lyapunov exponents.
In Eq. (7), the periods of the two functions in time, i.e. cos Zt and cos nZt; are proportional to

each other due to the fact that n is a ratio of two integers M and N as in Eq. (2). Thus, these two
functions have a common factor circular frequency

o� ¼
Z
N
, (8)

which renders it possible to construct a three-dimensional phase space to study the dynamics of
the system. By introducing the phase angle

j � o�t mod 2p 2 ½0; 2pÞ, (9)

a phase space can be defined in cylindrical coordinates (r; y; z) as

r ¼ x; y ¼ j; z ¼ x0. (10)

In the above phase space, two-dimensional Poincaré sections can also be established:

fðx; x0Þjj ¼ j0 2 ½0; 2pÞg, (11)

where j0 is an arbitrary constant. As is well known, Poincaré sections are very useful in
distinguishing different types of motion: periodic, quasi-periodic or chaotic.
For dry friction damped systems, another powerful tool is the mapping method. A map is a

relationship which links one point in the state space to another, and its obvious advantage is the
reduction of the dimension of the system. Naturally, one can choose stick-to-slip transition states
as mapping points as they correspond to the discontinuity of dry friction. Let xn be the nth stick-
to-slip displacement of the mass and jn be its corresponding phase angle as defined in Eq. (9). The
following relationship between xn and jn can be derived:

xn ¼
xp cosðMjnÞ � xfs

1þ � cos ðNjnÞ
(12)

in which the upper and lower part of the compound sign � corresponds to the entered slip mode
where x0oxv and x04xv; respectively. With xn; bifurcation diagrams can be drawn on which post-
transient points of xn vs. the value of bifurcation parameters are plotted, from which the influence
of bifurcation parameters on the system dynamics can be analyzed. Based on jn; the following
one-point map is introduced

H : jn 7!HðjnÞ ¼ jnþ1 ðn ¼ 1; 2; . . .Þ, (13)

which allows a simple determination of the maximal Lyapunov exponent l of the system, cf.
Ref. [16]:

l ¼ lim
n!1

1

n

Xn�1
p¼0

ln jH 0ðjpÞj. (14)

Fig. 3 shows a one-dimensional map with M ¼ 1;N ¼ 2 and � ¼ 0:25; which is discontinuous.
Owing to the discontinuity of the map, care must be taken in the computation of the Lyapunov
exponent. We use finite difference technique to calculate the derivative in Eq. (14), and make sure
that the points used to calculate the derivative are on the same continuous branch of the map. In a
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Fig. 3. A one-point map with M ¼ 1;N ¼ 2; � ¼ 0:25:
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repeated process, the difference between HðjÞ and Hðjþ DjÞ is examined, and in case it is ‘too
large’, a smaller Dj is chosen until the images become close to each other. Finally, it should be
pointed out that the above discussion of the bifurcation diagram, one-dimensional map and
Lyapunov exponent is applicable only to the stick-slip motion, which is the major interest of this
study. For the case of non-stick motion where the mass never reaches the belt speed, we can define
the states of the mass where its velocity equals zero as the mapping points instead.
4. Numerical results

In this section, bifurcation diagrams are plotted to illustrate the influence of the parametric
excitation on the dynamic behavior of the system under various external and parametric
excitation frequencies. Two system parameters are considered: one is the bifurcation parameter �;
which indicates the amplitude of the parametric excitation, and the other is the ratio between the
external and parametric excitation frequencies, namely,M=N: In the simulations, the basic system
properties are assumed to take the values

p ¼ 0:25; xfk ¼ 2:5; xfs ¼ 4:0; xv ¼ 1; Z ¼
2

3
. (15)

As is well known, in nonlinear systems different attractors can occur corresponding to different
initial conditions. Since we do not perform attraction basin analysis in this study, it is pointed out
that the following remarks are limited to the attractors shown in the figures. Fig. 4 shows the
stick-to-slip transition displacement x as a function of the parameter � when MoN: Only post-
transient points are plotted in the figure so that it reflects the steady-state motion of the system.
Fig. 4(a) displays the case where M equals 4 and N equals 7. It is observed that for � starting from
0 up to around 0.21, both non-periodic and periodic responses appear, and they mingle with each
other. Furthermore, non-periodic responses occupy the majority of the above parametric range.
When the parameter � becomes larger than 0.21, however, the system exhibits only periodic
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motion and its periodic number is always 7 regardless of different values of �: Figs. 4(b)–(d)
correspond to the cases of M=N equal to 1/2, 1/4 and 1/9, respectively, in which similar
structures are demonstrated in comparison with Fig. 4(a). More interestingly, it is found that only
periodic solutions exist when � exceeds the same critical value, 0.21, despite the variation of the
ratio M=N; and the corresponding periodic number is equal to N: Furthermore, the type of the
bifurcations at � ¼ 0:21 can be investigated with the aid of the one-dimensional map defined in
Eq. (13). To illustrate, consider the case of M ¼ 4 and N ¼ 7; as shown in Fig. 4(a). Since the
corresponding periodic motion is of 7-period when �is larger than 0.21, we compute the 7th
iterated map, namely, ð7Þ : jn 7!H ð7ÞðjnÞ ¼ jnþ7; with three different values of the bifurcation
parameter, as displayed in Fig. (5). Fig. 5(a) is for � ¼ 0:25which corresponds to the periodic
motion. Evidently, seven stable fixed points occur, indicated by the seven intersection points of the
iterated map curve and the straight line jnþ7 ¼ jn: In Fig. 5(b), one can see that there exists no
fixed point for � ¼ 0:20; which is selected from the non-periodic band in the left neighborhood of
the bifurcation point. Finally, the case for the bifurcation point � ¼ 0:21 is plotted in Fig. 5(c),
where the curve of the iterated map is tangent to the 451 straight line. Thus, we can conclude that
a tangent bifurcation gives rise to the transition from the non-periodic motion to the periodic
motion of the system.
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From bifurcation diagrams one can distinguish between periodic and non-periodic solutions,
nevertheless, to judge whether a non-periodic solution is quasi-periodic or chaotic one needs other
tools, among which are Poincaré sections and Lyapunov exponents. With their help it can be
shown that both quasi-periodic and chaotic motions occur in the system. To illustrate, we choose
two values of �; 0.005 and 0.20, from the non-periodic bands in Fig. 4(c) and examine their
corresponding Poincaré sections and Lyapunov exponents in Figs. 6(a)–(d). It is manifested that
for � equal to 0.005, the Poincaré section (j ¼ 0) is a closed curve and the corresponding
Lyapunov exponent converges to zero with increasing number of iterations, and therefore the
motion is quasi-periodic. For � ¼ 0:20; in contrast, the Poincaré section takes on an irregular
pattern essentially dissimilar to the plots of finite number of points and of closed curves which
correspond to periodic and quasi-periodic motions, respectively. Hence, the Poincaré section
indicates chaos. In addition, the Lyapunov exponent converges to a positive number 0.03 along
the increased number of iterates, which is one defining characteristic of chaos. Finally, Figs. 6(e)
and (f) confirm the periodicity of the motion for � ¼ 0:25; in which the Poincaré section consists of
one point and the Lyapunov exponent converges to a negative value of �0.92.
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In Fig. 7, the bifurcation diagrams for the cases of MXN are shown. Fig. 7(a) illustrates the
stick-to-slip transition displacement x vs. �; with both M and N set to 1. Periodic, quasi-periodic
and chaotic attractors are observed, which can be verified by the Poincaré sections for � equal to
0.28, 0.15 and 0.24, respectively, as displayed in Figs. 8(a)–(c). More interestingly, there exists a
parametric range, i.e. [0.18, 0.235], in which no point is plotted. This is a consequence of the fact
that within the above parametric range the steady-state motion for the system is non-stick motion
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Fig. 7. Transition displacement x vs. � with MXN: (a), (c), (e), (g) stick-slip motions and (b), (d), (f), (h) non-stick

motions; (a), (b) M ¼ 1;N ¼ 1; (c), (d) M ¼ 3;N ¼ 1; (e), (f) M ¼ 9;N ¼ 2; (g), (h) M ¼ 8;N ¼ 1:
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instead, where there is no stick-to-slip transition state. For the non-stick motion, we can plot
bifurcation diagrams using the displacement of the mass when its velocity equals zero, as seen in
Fig. 7(b). Obviously, the non-stick motion is periodic for the whole parametric range. Another
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Fig. 8. Poincaré sections with M ¼ 1;N ¼ 1: (a) � ¼ 0:28; (b) � ¼ 0:15; (c) � ¼ 0:24:

Fig. 7. (Continued)
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Fig. 9. (a) Poincaré section and (b) Lyapunov exponent with M ¼ 1;N ¼ 1 and � ¼ 0:0625:
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phenomenon worth mention is that at � ¼ 0:0625 only one point is drawn in the bifurcation
diagram Fig. 7(a), which may lead one to conclude that the corresponding response is periodic. In
fact, though, the response of the system at that point is quasi-periodic, which can be verified with
Figs. 9(a) and (b), where the corresponding Poincaré section is shown to be a closed curve and the
Lyapunov exponent converges to zero. This unique phenomenon can be explained with the aid of
Eq. (12). For quasi-periodic motions, the stick-to-slip transition displacement xn in general varies
with the phase angle jn; according to Eq. (12). With � ¼ 0:0625 and M ¼ N ¼ 1; however, Eq. (12)
becomes an identical equation and consequently xn always takes the value of 4. Thus, only one
point, (0.0625, 4.0), is plotted in the bifurcation diagram although the motion is not periodic. Figs.
7(c–h) show the cases of M=N equal to 3/1, 9/2 and 8/1, respectively. It is evident that for all these
cases ofMXN; both types of steady-state motion, that is, stick-slip and non-stick motions, can take
place, which is very different from the cases of MoN; where only stick-slip motions are observed.
Moreover, it is found that all the non-stick motions are periodic, which implies that the stick phase
plays a crucial role in the occurrence of non-periodic motions. Finally, a trend in the influence of
M=N on the system dynamic behavior is discovered from these figures together with Figs. 7(a and
b). It is observed that as M=N is increased from 1/1 to 8/1, less non-periodic motions occur and
more periodic motions take place, with respect to the parameter �: As a matter of fact, if M=N
becomes big enough, such as 8/1, only periodic motions happen, as shown in Figs. 7(g and h).
5. Conclusions

The dynamics of a Coulomb friction damped block-on-belt system subjected to both parametric
and external excitations has been studied. The emphasis is on examining the influence of the
parametric excitation on the system dynamic behavior, under various frequency ratios between
the external and parametric excitations, namely M=N: Numerical simulations show that the
system possesses rich dynamics characterized by periodic, quasi-periodic and chaotic attractors,
and also suggest the following conclusions only relevant to the attractors found in the simulations
as other attractors may also exist in the system:
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(1)
 A tangent bifurcation is identified in the bifurcation diagrams with the amplitude of the
parametric excitation as bifurcation parameter, which gives rise to the transition from non-
periodic motions to periodic motions for the system.
(2)
 When the excitation frequency ratio M=N is less than 1, only stick-slip motions occur
regardless of the change of the parametric excitation amplitude. Besides, if the parametric
excitation amplitude exceeds the a critical value which keeps the same despite the variation of
the ratio M=N; only periodic solutions exist and they are of N-period.
(3)
 For cases of M=NX1; in contrast, both stick-slip and non-stick motions can take place. It is
also found that all the non-stick motions are periodic, indicating the crucial role of the stick
phase in the occurrence of non-periodic motions. Moreover, as M=N is increased, less non-
periodic motions occur whereas more periodic motions take place, with respect to the
bifurcation parameter corresponding to the parametric excitation amplitude .
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